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Cortical Interneuron Subtypes Vary in Their Axonal Action
Potential Properties
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The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although
different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these
differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image
the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in
the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons,
which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in
their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata
and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the
same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of
somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested
that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action
potentials of somatostatin-expressing interneurons also depend on BK Ca 2�-activated K � channels. These results indicate that the two
broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform
unique computational roles in cortical circuit operations.
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Introduction
Cortical neurons receive synaptic inputs along their dendritic/
somatic/proximal axonal compartments and convert these into a

pattern of action potential discharge in their axon initial seg-
ments (Stuart and Sakmann, 1994; Stuart et al., 1997; Shu et al.,
2007a; Hu et al., 2010; Hu and Jonas, 2014). The contribution of
each cell type to cortical network processing is determined by the
anatomical connectivity, postsynaptic influence, and the mem-
brane properties of its soma, axonal, and dendritic arbors. Im-
munohistochemical studies reveal variation in localization of
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Significance Statement

Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in
the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons
receive information, process it, and pass on new information depends upon how these three compartments operate. While it has
long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that
the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result
implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections,
but also through how their axons operate.
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different ionic channels within the axons, dendrites, and somata
of different cortical cell types (Sekirnjak et al., 1997; Chow et al.,
1999; Trimmer and Rhodes, 2004; Lorincz and Nusser, 2008;
Debanne et al., 2011). While somatic whole-cell patch recordings
have revealed striking differences in action potential kinetics be-
tween neuronal subtypes, the small diameter of axons and den-
drites, particularly in the fine dendritic and axonal branches of
cortical interneurons, has made it difficult to routinely record
from these structures to directly assess the role of different chan-
nel distributions on a process’ electrical properties (Martina et al.,
2000; Kaiser et al., 2001; Hu et al., 2010, 2014; Hu and Jonas,
2014; Li et al., 2014). This limitation can be alleviated through the
use of recent advances in voltage-sensitive dye (VSD) imaging
techniques (Djurisic et al., 2004; Canepari et al., 2010; Foust et al.,
2010, 2011; Popovic et al., 2011).

Two of the major populations of cortical interneurons that have
been defined in the mouse are parvalbumin (PV)-expressing and
somatostatin (SOM)-expressing cells, which make up �50% and
30%, respectively, of cortical GABAergic interneurons (Xu et al.,
2010; Rudy et al., 2011). These two groups have unique electrophys-
iological properties and form distinct synaptic connections with py-
ramidal cells of the cortex. PV-expressing interneurons exhibit
somatic action potentials that are unusually short in duration and
are often referred to as fast-spiking (FS) interneurons (McCormick
et al., 1985; Ascoli et al., 2008; Hu and Jonas, 2014). FS interneurons
are typically basket or chandelier GABAergic cell types, and their
axons target the proximal dendrites, somata, and axon initial seg-
ments of nearby pyramidal cells (McCormick et al., 1985; Ascoli et
al., 2008; Hu and Jonas, 2014). SOM-expressing interneurons,
which are typically Martinotti cells, show regular spiking (RS) activ-
ity patterns with broad action potentials. In contrast with FS cells,
SOM-expressing interneurons target the distal portions of pyrami-
dal cell dendrites (Kawaguchi and Kubota, 1996; Wang et al., 2004;
Halabisky et al., 2006; McGarry et al., 2010; Perrenoud et al., 2013).

FS interneurons are capable of generating high-frequency
(�300 Hz) trains of relatively short duration (e.g., �0.5 ms at
half amplitude) action potentials with little spike frequency ad-
aptation, as recorded from their somata (McCormick et al., 1985;
Kawaguchi, 1993b, 1995; Wang et al., 2002; Nowak et al., 2003;
Szabadics et al., 2006; Hu and Jonas, 2014). In contrast, SOM
interneurons are typically characterized by an RS somatic elec-
trophysiological signature consisting of, on average, relatively
broad action potentials (�0.5 ms at half amplitude), spike fre-
quency adaptation, and maximal firing rates of �200 Hz (Kawa-
guchi and Kubota, 1996; Halabisky et al., 2006; Ma et al., 2006; Xu
et al., 2006; McGarry et al., 2010). Whether or not these electro-
physiological differences are also expressed in the axon of these
two cell types is functionally important because electrophysiolog-
ical properties in the axon and presynaptic terminals contribute
significantly to the conversion of dendrosomatic membrane po-
tential deviations into synaptic transmission onto the neuron’s
postsynaptic partners.

Here, we demonstrate that cortical SOM (RS) and FS in-
terneurons differ not only in the duration of their action po-
tentials at the somatic, but also axonal level, and vary in the
ability of action potentials to back-propagate into their den-
drites. These differences appear to result, at least in part, from
differential expression of potassium channels. Furthermore,
we establish the feasibility of using VSD in the physiological
exploration of currently electrophysiologically inaccessible
portions of cortical inhibitory interneurons (e.g., fine axonal
branches). Our observations indicate that the cortical in-
terneuron subtypes studied here have differing physiological

properties along their dendrosomatoaxonal axes, which inev-
itably contribute to their ability to perform distinct circuit
level computations.

Materials and Methods
Slice preparation and maintenance. Coronal slices of somatosensory cor-
tex from homozygous GIN mice (FVB-Tg (GadGFP) 45704 Swn/J; stock
#003718; The Jackson Laboratory), which express GFP in a subset of
somatostatin-containing interneurons (Oliva et al., 2000) or entorhinal
cortical slices from hemizygous RCAN2-GFP-expressing mice (RCan2;
STOCK Tg (Rcan2-EGFP) EI79Gsat; stock #010591-UCD; GENSAT),
which express GFP in fast-spiking interneurons with relatively minor
overlap with non-FS neurons (Tahvildari et al., 2012), were prepared in
accordance with national and institutional guidelines. Male or female
mice (21- to 38-d-old; GIN average age: 31-d-old; RCAN2 average age:
26-d-old) were deeply anesthetized with sodium pentobarbital (50 mg/
kg) and killed through decapitation. The brain was rapidly removed and
placed in ice-cold (�5°C) cutting solution containing the following (in
mM): 110 choline chloride, 2.5 KCl, 7.0 MgCl2, 0.5 CaCl2, 25 NaHCO3,
1.25 NaH2PO4, 20 dextrose. Brain slices, 300 �m thick, were cut on a
Leica microslicer (model VT1000S) in ice-cold cutting solution and
transferred to a 35°C incubation chamber containing artificial CSF (in
mM) as follows: 126 NaCl, 3.0 KCl, 1 MgCl2, 2 CaCl2, 26 NaHCO3, 1.25
NaH2PO4, 10 dextrose, 3 myo-inositol, 2 Na-pyruvate, and 0.4 L-ascorbic
acid. Slices were allowed to incubate for at least 1 h before dye loading and
recording in a submersion chamber.

Cell selection. The VSD imaging system is constructed around an up-
right microscope (Olympus BX51WI) equipped to switch between three
different imaging systems: (1) confocal epifluorescence for cell selection
and morphological reconstruction (Yokogawa CSU-22; Solamere Tech-
nology); (2) infrared-differential interference contrast video microscopy
for establishing whole-cell recordings; and (3) wide-field epifluorescence
for VSD imaging. Slices were initially examined with the confocal imag-
ing system to determine morphological completeness of individual GFP-
positive cells using an optically pumped semiconductor laser (Sapphire
488-20, Coherent). Suitable cells for wide-field VSD imaging had intact
dendritic and axonal arbors lying in a single focal plane located within 50
�m of the slice surface. These criteria ensure that large portions of den-
dritic and axonal arbors can be monitored simultaneously with minimal
degradation of the image from light scattering in the tissue. Axons
and dendrites were first identified based on structure diameter. The den-
dritic diameter was qualitatively larger than that of axons. Once a process
was identified as a potential axon or dendrite, we followed the extent of
the process to determine branching patterns. Axons were identified as
thin processes with branches issuing at �90° with respect to the primary
shaft (see Fig. 1). Axons often branched at obtuse angles forming collat-
erals directed back toward the cell body. In contrast, dendritic branches
formed angles �90° and thus continued elaborating along trajectories
oriented away from the soma. For both cell types, we observed in a subset
of neurons the axon-shaped appendage issuing from a primary dendrite
and not the soma directly (SOM (RS): 25% and FS: 16% dendritic axon
origin). Dendrite originating axons were only excluded from studies in-
volving propagation speed and from analysis of dendritic action poten-
tial trains. These criteria for identifying axons and dendrites yielded
consistent pharmacological and electrophysiological differences ob-
served here and were confirmed through microscopic examination of
biocytin-filled neurons (n � 24) of both SOM and FS interneurons (Tah-
vildari et al., 2012).

VDS loading and recording. Suitable GFP-positive neurons were
loaded with the VSD JPW3028 (available from Invitrogen as D-6923)
through a glass patch electrode by filling the tip with dye-free internal
solution (in mM as follows: 130 K-gluconate, 7 KCl, 4 ATP-Mg, 0.3 GTP-
Na, 10 phosphocreatine-Na, 10 HEPES, 0.4% biocytin, adjusted to pH
7.4 and 284 mOsm), and back-filling with dye-containing internal solu-
tion (400 – 800 �M). Dye-free solution in the tip of the patch electrode
was necessary to prevent spilling the highly lipophilic dye onto the slice
before patching the cell of interest. Dye bound to membrane outside the
cell of interest would increase the background fluorescence ( F), thus
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degrading recording sensitivity. A whole-cell somatic recording was ob-
tained from the selected neuron at room temperature (22°C) under
infrared-differential interference contrast optics, and the dye was al-
lowed to diffuse into the cell for 15–30 min. After filling, the patch elec-
trode was removed from the neuron forming an outside-out patch, and
the cell was incubated at 35°C for at least 1 h, allowing the dye to diffuse
from the soma into distal processes. The filled neuron was then repatched
near physiological temperature (35°C) with a dye-free patch electrode for
simultaneous optical and electrophysiological recording. Before begin-
ning optical recordings, we confirmed the physiological properties of the
filled cells. RCAN2-positive FS cells were identified by their short dura-
tion action potentials, which exhibited little or no spike-frequency adap-
tation during trains of action potentials (500 ms step depolarizations).
We also performed 50 or 150 ms step hyperpolarizations to confirm fast
membrane time constants. All RCAN2 units included in the analyses had
stereotyped FS characteristics. In the GIN line, there is a small overlap
(�30%) in cortex of somatostatin-positive units that coexpress calre-
tinin but have similar Martinotti morphology (Xu et al., 2006). Analysis
of dendritic and axonal properties failed to show differences in measured
parameters across the population and all units were subsequently in-
cluded in the GIN population.

VSD-filled neurons were illuminated with a 450 mW frequency-
doubled diode-pumped Nd:YVO4 low-noise laser emitting at 532 nm
(MLL532; Changchun New Industries Optoelectronics Technology).
The laser beam was directed to a light guide coupled to the microscope
via a single-port epifluorescence condenser (TILL Photonics) designed to
overfill the back aperture of the objective, enabling nearly uniform illu-
mination at the object plane. Somatic illumination was limited by the
microscope field-stop to minimize damage to the recorded neuron. Flu-
orescence from the stained cell was collected through the objective (60�
water-immersion; 1.0 numerical aperture; Nikon), long-pass filtered
(RG610 HP; Schott), and projected onto an 80 � 80 pixel high-speed
CCD camera with a 20 kHz maximum frame rate (NeuroCCD-SMQ;
RedShirtImaging) mounted at the front camera port of the trinocular
tube. At the magnifications that we used, each pixel of the camera corre-
sponded to a square region of 4 or 1 �m per side, depending on the
installation of either a 0.3� or 0.1� coupler (Optem serial #25-70-12
and RL091301-1). Changes in VSD fluorescence were recorded in re-
sponse to action potentials initiated by intrasomatic current injections
(single 50 ms step depolarization or train of 5 ms step depolarizations at
a frequency of 100 Hz). For high temporal resolution assessment of ac-
tion potential kinetics, we used CCD frame rates of 10 kHz (80 � 12
pixels) or 20 kHz (26 � 4 pixels). At these temporal and spatial acquisi-
tion frequencies, single-to-noise ratio (S/N) � 8 was typically achieved in
single passes or by averaging small numbers (2– 4) of trials. It has previ-
ously been determined in multiple cell types that the introduction of the
VSD used here (JPW3028) does not alter intrinsic membrane properties,
including input resistance, capacitance, or shape and kinetics of action
potential generation (Canepari et al., 2007, 2010; Foust et al., 2010, 2011;
Casale and McCormick, 2011; Popovic et al., 2011). In agreement with
this lack of effect on membrane or action potential properties, our values
for action potential widths for fast-spiking and SOM subtypes of in-
terneurons were not statistically significantly different from those previ-
ously reported for non– dye-loaded interneurons of the same type (Ma et
al., 2006; Tahvildari et al., 2012).

To determine the influence of specific potassium channel subtypes on
action potential kinetics in the somata and axons of SOM (RS) and FS
interneurons, we performed experiments using potassium channel
blockers. We bath applied tetraethylammonium chloride (TEA; 1 mM,
Sigma-Aldrich), �-dendrotoxin (�-DTX; 100 nM, Alomone Labs; a spe-
cific blocker of Kv1 channels), iberiotoxin (IBTX; 100 nM Sigma-Aldrich;
a blocker of large conductance calcium-activated potassium channels;
BK channels), or paxilline (PAX; 5 �m, Tocris Bioscience; a potent
blocker of large conductance calcium-activated potassium channels; BK
channels). For toxin experiments, we first acquired 4 or 5 control trials
over a period of 5–10 min in the axon in response to somatically elicited
action potentials. We then commenced bath application of the drug,
waiting 10 –20 min before acquiring 5–10 trials over the following 20 – 40
min. Drugs were subsequently washed out for at least 20 – 40 min before

acquiring 3–5 more trials from the same axonal region. For IBTX and
�-DTX, we attempted washouts (�40 min) for 2 cells in each group. We
were unable to wash out the effects of these drugs, and so we have omitted
the wash condition from example traces and time dependence plots in
Figure 5. The effects of TEA were found to be at least partially reversible
in all tested neurons, and we have included sample washout traces and
washout time dependence in Figure 5. The chamber flow rate was mea-
sured at �4.5 ml/min. The effects of potassium channel blockers on
action potential duration were assessed by examining the changes in
action potential waveform from the same pixels before, during, and fol-
lowing washout of each manipulation. Changes in action potential du-
ration are presented as mean percentage change � SEM.

For subthreshold depolarization experiments (see Fig. 6), VSD-filled
cells were depolarized through somatic current injection by 10 –20 mV.
Depolarizations lasted for �10 s before a brief (5 ms) current injection
identical to that used during resting membrane trials was delivered to
induce an action potential. Depolarization trials were interleaved with
trials recorded at resting membrane potentials with 1 min intertrial in-
tervals. We also changed the starting condition (resting membrane or
depolarized) between cells to account for any potential recording bias.
Reported voltages are corrected for the liquid junction potential, which
was calculated as �14 mV.

To compare the propagation and kinetics of the action potential across
subcellular compartments and between interneuron types, we increased
S/N by averaging fluorescence signals in regions of interest (ROIs) span-
ning �15–21 �m lengths of dendrite or axon. For each ROI, we mea-
sured the soma-to-ROI (center-to-center) path length along the
interrogated axon or dendrite (ImageJ, National Institutes of Health).
This length of pixel averaging results in the inability to precisely deter-
mine the point of action potential initiation in axons as it precludes short
distance evaluations. However, these pixel stretches do suggest a proxi-
mal axonal region for action potential initiation, similar to those ob-
served with electrical recordings (Hu et al., 2014; Li et al., 2014). For FS
axons, we often imaged axon collaterals that could not be easily traced
along the axon to the soma due to the highly branching and sinuous
nature of these processes. In this case, we computed the linear distance in
micrometers of the recorded region to the soma and report this value as
the “estimated soma-to-ROI distance,” denoted with gray circles in Fig-
ure 3. This strategy, although useful for comparing the kinetics along the
extent of FS neuron axons, certainly underestimates the true soma-to-
ROI distance.

Each imaging trial lasted between 20 and 50 ms, and the VSD was
illuminated only during this period, with intertrial intervals of at least 1
min. Dendritic and axonal arbors tolerated between 10 and 20 such trials
before changes in the somatic electrophysiological properties of the re-
corded neuron (action potential amplitude and duration, resting mem-
brane potential, resting input resistance) were detected (�10% of
baseline values) indicating photodynamic damage, in which case the
experiment was terminated. These trial numbers were determined em-
pirically by imaging filled units from our cell populations of interest and
recording the somatic voltage changes. For GIN cells, we found most
units tolerated 10 –15 trials before changes (�10% of baseline) in so-
matic action potential kinetics were observed (average percentage change
[mean � SEM] after 10 –15 trials: width: 3.2 � 2.8%, rise time: �0.03 �
2.2; fall time: 4.1 � 2.6%, amplitude: �0.74 � 3.1%; n 	 7 cells, p � 0.9,
two-tailed Wilcoxon signed-rank test). RCAN2 (FS) units tolerated even
greater numbers (15–20) of trials before changes in somatic action po-
tential waveform were observed (average percentage change [mean �
SEM] after 15–20 trials: width: 2.6 � 3.3%; rise time: �1.8 � 3.6; fall
time: 2.9 � 6.1%; amplitude: �1.4 � 3.8%; n 	 10 cells, p � 0.7, two-
tailed Wilcoxon signed-rank test). After experimentation, confocal
z-stacks were taken through the VSD-filled interneuron to discern the
fine structural details of the dendritic and axonal arbors.

Data analysis. The methods for analyzing data obtained from the VSD
used here have been published previously (Canepari et al., 2007, 2010;
Foust et al., 2010, 2011; Popovic et al., 2011). The S/N of imaged voltage
deflections varied from cell to cell depending on dye concentration,
depth of scattering tissue between the image process and slice surface,
and nonspecific background fluorescence emanating from nearby, out-
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of-focus structures. Thus, to increase S/N to at least 8, we averaged fluo-
rescence changes from groups of neighboring pixels (8 – 60 pixels) across
small numbers (1– 4) of trials. To avoid smearing in the trial-to-trial
average because of temporal jitter in spike initiation, for each trial we
shifted the signal in each pixel by the time needed to align the peak of the
electrically recorded somatic action potential (Fig. 1). Within trial

bleaching and low-frequency noise were removed by subtracting an ex-
ponential or polynomial function fit to the raw fluorescence signal (Fig.
1 B, C). A low-pass binomial filter (1–2 weight) was applied to reduce
high-frequency noise (Fig. 1D). The waveforms of multiple trials under
the same conditions were averaged (Fig. 1E). Finally, waveforms were
cubic spline interpolated to 100 kHz for precise estimation of spike ki-
netics (e.g., width, 10%–90% rise time, 90%–10% fall time) (Fig. 1F ).
These procedures resulted in a VSD waveform that closely tracked that
recorded electrically (Fig. 1G).

The width of the spike-associated fluorescence change was measured
at the half-maximum amplitude. The 10%–90% rise time of the fluores-
cence change was determined by calculating the difference between the
time of 10% and 90% of the maximum amplitude of the fluorescence
change from the preceding baseline fluorescence. We could not use dF/dt
to determine peak rate of change because fluorescence was not measured
at a rate that had high enough temporal resolution to determine peak
changes in action potential shape, and fluorescence is not scaled to an
absolute voltage. Non–voltage-dependent background fluorescence var-
ies with factors other than voltage (e.g., density of dye, partitioning of dye
in inner and outer membranes, depth of process in tissue), precluding
straightforward conversion of dF/F into voltage (Salzberg et al., 1983).
The dye, however, linearly follows voltage changes in the physiological
range with microsecond precision (Fig. 1G) (Salzberg et al., 1993), mak-
ing a comparison across compartments of the kinetics of fluorescence
changes a reliable measure (Fig. 1G). This dye characteristic also makes it
possible to determine propagation speed of action potentials. To quan-
tify this, we computed the latency to half-maximum spike amplitude at
different distances along the axon and dendrite compared with the tim-
ing of half-maximum amplitude observed at the soma. We restricted
latency analyses to units in which the axon originated from the soma.
Using linear regression on the distance-latency data, we took the inverse
slope of the fit to determine propagation velocity (Fig. 2). Latency-
distance plots for processes that we had determined to be axons based
on morphological properties yielded regression lines with negative
y-intercepts, suggesting that the action potential originated in the prox-
imal axon, subsequently propagating toward both the soma and down
the distal axon.

Changes in action potential shape are reported as normalized mean
percentage change � SEM unless otherwise noted. Statistical signifi-
cance was determined using parametric tests (one-way ANOVA, two-
tailed unpaired t tests, ANCOVA) for data with sample sizes �10 that
followed a normal distribution. For small sample sizes, for example,
during drug and subthreshold testing, we restricted our statistical
analyses to nonparametric tests, such as one- or two-tailed Wilcoxon
signed-rank and Kruskal–Wallis tests. The test used is stated along
with the p value. p values �0.05 were treated as significant.

Results
Action potential propagation and shape are markedly
different between SOM-expressing (RS) and FS interneurons
across their entire dendrosomatoaxonal axes
To assess the ability of action potentials to propagate into the
dendritic and axonal arbors of SOM (RS) and FS interneurons,
we imaged fluorescence changes at 10 or 20 kHz in response to
action potentials generated somatically by single 50 ms or multi-
ple 5 ms (trains of 4 –5 steps at 100 Hz) step depolarizations.
Single action potentials elicited by somatic current injection led
to action potential-shaped voltage deflections, as evidenced by
changes in fluorescence, in SOM (RS) and FS interneuron den-
drites, axons, and axon collaterals (Fig. 2). The shape of the action
potential, and the distance to which it back-propagated into the
dendrites, however, varied between the cell types.

In all cortical SOM (RS) interneurons, we found spike-
shaped fluorescence changes in response to action potentials
along primary, secondary, and tertiary dendritic branches, in-
cluding at our most distal recording site of �150 �m (Fig. 2A;
n 	 32 cells). Dendritic propagation speed averaged 1.1 m/s
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Right, Colored traces represent average fluorescence changes (4 trials) recorded optically in interneuron dendrites and black trace shows an average of four trials recorded electrically at
the soma. Gray boxes and traces represent regions outside of the dendritic arbor and were used to determine light scatter from the processes. B, Confocal z-projection of a VSD-filled SOM
interneuron. Colored boxes and traces represent axonal regions used for assessing action potential propagation (average of 5 trials). Bottom, Overlay of voltage and fluorescence traces
from above cell to demonstrate spike latency between the axon and soma. C, Scatter plot for latency-distance along the axon of action potential half-height time relative to the somatic
action potential half-height (n 	 8 cells). Half-height occurs first in the proximal axon. D–F, Same as in A–C, but for VSD-filled FS interneuron. D, Average traces are taken from 5 trials.
E, Average traces taken from 5 trials. F, Latency-distance plot includes 10 cells.
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(n 	 10 cells), similar to previous reports of hippocampal
SOM-expressing neurons (Martina et al., 2000). Analysis of
spike width at half-maximum amplitude revealed that the ac-
tion potentials broadened during back-propagation into the
dendrites (Fig. 3A): width SOM proximal dendrite (�50 �m),
0.48 � 0.02 ms duration (mean � SEM); distal dendrite
(�100 �m), 0.61 � 0.04 ms duration (mean � SEM; n 	 10
cells).

In FS interneurons, action potentials reliably elicited spike-
shaped changes in fluorescence in the proximal dendrite (�50
�m from the soma) but appeared to fail at greater distances
where fluorescence changes merged with noise fluctuations

(Fig. 2D; n 	 16 cells). Because of the decrease in S/N with
dendritic distance, we were unable to reliably determine prop-
agation speed. Spike width at half-maximum amplitude rap-
idly increased with distance along the dendrite with a slope
significantly steeper than that observed in SOM (RS) den-
drites: FS proximal dendrite (�50 �m), 0.4 � 0.04 ms dura-
tion (mean � SEM); distal dendrite (�100 �m), 0.72 � 0.1 ms
duration (mean � SEM) (n 	 7 FS cells; p � 0.001,
ANCOVA).

Single action potentials reliably elicited spike-shaped fluo-
rescence transients in all imaged axons and collaterals in both
cortical cell types (Fig. 2 B, E; SOM (RS), n 	 39 cells; FS, n 	
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24 cells). The pronounced difference observed in somatic ac-
tion potential duration (FS, 0.37 � 0.02 ms; n 	 22 cells; SOM,
0.5 � 0.01 ms; n 	 18 cells; p � 0.001, two-tailed unpaired t
test) was maintained well into the axons and axon collaterals
(Fig. 3; p � 0.01, one-way ANOVA) where synaptic connec-
tions are formed (Binzegger et al., 2004, 2005). Examining the
rise and fall time of action potential waveforms revealed FS
action potentials were faster rising, and especially faster fall-
ing, than those in SOM interneuron axons (Fig. 3; p � 0.03 for
both measured parameters, two-tailed unpaired t test). On
average, action potentials propagated at speeds of 0.6 m/s in FS
axons (n 	 10) and 0.9 m/s in SOM (RS) axons (n 	 8), similar
to values previously reported for unmyelinated axons in the
cortex (Foust et al., 2010, 2011; Popovic et al., 2011). These
speeds are slightly slower than those recently reported for the
main axon of hippocampal FS interneurons (Hu and Jonas,
2014), but faster than those reported for antidromic propaga-
tion in SOM and PV cortical interneurons (Li et al., 2014).

Trains of action potentials invade dendritic and axonal arbors
of cortical FS and SOM (RS) interneurons with little change in
kinetics
The effects of firing frequency on action potential shape and
propagation have previously been reported for hippocampal FS
interneuron dendrites and axons and for hippocampal SOM (RS)
dendrites using traditional electrophysiological methods (Mar-
tina et al., 2000; Hu et al., 2010; Hu and Jonas, 2014). We expand
on these hippocampal findings by investigating trains of action
potentials generated at 100 Hz in cortical interneurons with VSD.
Our results are similar to those previously observed electrophysi-
ologically in the hippocampus.

In FS dendrites and axons, we found trains of action potentials
(4 spikes) at 100 Hz elicited spike-shaped fluorescence changes in
single trials (Fig. 4A). Comparing dendritic action potential ki-
netics between the first and fourth spike showed no significant
changes in rise time, fall time, width at half-maximum amplitude,
or amplitude of fluorescence change (Fig. 4A; dendrite, p � 0.05,
Wilcoxon signed-rank test, n 	 5). In both the soma and axon,
kinetics between the first and fourth spike revealed no significant
differences in any measured parameter (Fig. 4A; p � 0.05, Wil-
coxon signed-rank test; soma, n 	 8; axon, n 	 5).

For SOM (RS) interneurons, we found 100 Hz stimulation
also reliably generated fluorescence transients in dendrites in sin-
gle trials (Fig. 4B). Comparison of dendritic action potential ki-
netics between the first and fourth spike elicited at a frequency of
100 Hz revealed no significant changes in the full width at half-
maximum, 10%–90% rise time, 90%–10% fall time, or ampli-
tude of fluorescence change (Fig. 4B; dendrite, p � 0.05,
Wilcoxon signed-rank test; n 	 5). Analysis of the axon, which
has not been previously reported, revealed reliable action poten-
tial propagation and a small, but significant, decrease in axonal
action potential amplitude between the first and the fourth spike
(Fig. 4B; axon, 
F/F amplitude: �11.4 � 3.9%, p 	 0.03, Wilcoxon
signed-rank test; n 	 7). At the soma, we found a significant increase
in action potential duration and 10%–90% rise time, in addition to a
significant decrease in action potential height (Fig. 4B; p � 0.02,
Wilcoxon signed-rank test; soma, n 	 7).

Action potential kinetics in SOM (RS) and FS cells are
differentially sensitive to potassium channel blockers
Previously, we demonstrated that different K� currents underlie
action potential repolarization in the axons and somata of corti-
cal pyramidal neurons (Shu et al., 2007b; Yu et al., 2010; Foust et

al., 2011). Here, we explored whether the action potentials in
cortical SOM (RS) and FS neurons are differentially sensitive to
K� channel blockers in their axonal and somatic compartments.

In both SOM-expressing (RS) and FS cells, we assessed the
effects of bath application of three potassium channel blockers:
�-DTX (100 nM), IBTX (100 nM), and TEA (1 mM). �-DTX is a
selective blocker of voltage-gated potassium channels Kv1.1, 1.2,
and 1.6 (Coetzee et al., 1999). These channels give rise to the
low-threshold rapidly activating, slowly inactivating potassium
conductance known as the D-current. D-current has been shown
to regulate spike initiation threshold in the soma of FS interneu-
rons (Goldberg et al., 2008) and influence axonal spike duration
in layer 5 pyramidal cells (Kole et al., 2007; Shu et al., 2007b;
Foust et al., 2011). IBTX is a relatively specific blocker of BK
Ca 2�-activated K� channels (Coetzee et al., 1999; Shao et al.,
1999). TEA, on the other hand, is a broad-band blocker of K�

channels, although it exhibits some specificity for Kv3 and BK
Ca 2�-activated K� channels at low concentration (1 mM) (Lan-
caster and Nicoll, 1987; Chow et al., 1999; Coetzee et al., 1999).

Bath application of �-DTX resulted in a large increase in ax-
onal action potential duration in the axons of both SOM-
expressing (RS) and FS interneurons (Fig. 5; SOM, 49.9 � 9.3%,
n 	 5 cells; FS, 49.9 � 20.8%; n 	 5 cells; p � 0.05, one-tailed
Wilcoxon signed-rank test), suggesting that Kv1 channels are
critically involved in spike repolarization in both SOM (RS) and
FS axons and axon collaterals. In contrast to the effects on axonal
action potentials, application of �-DTX resulted in a small in-
crease in somatic action potential duration in SOM-expressing
(RS) and FS interneurons (Fig. 5; SOM, 11.7 � 3.1%, n 	 5 cells;
FS, 17.7 � 6.9%, n 	 6 cells; p � 0.05, one-tailed Wilcoxon
signed-rank test). For both cell types, �-DTX-induced action po-
tential broadening was greater in the axon than the somatic com-
partment (p � 0.03, two-tailed Wilcoxon signed-rank test).

In response to bath application of 1 mM TEA, action potential
widths were seen to increase in the soma and axon of both SOM-
expressing (RS) and FS interneurons (Fig. 5; SOM: soma, 81.8 �
18.8%, n 	 5; axon, 60.8 � 21.2%, n 	 5, p � 0.03, all compart-
ments, one-tailed Wilcoxon signed-rank test; FS: soma, 75.7 �
5.8%, n 	 6; axon, 39.9 � 6.4%, n 	 5; p � 0.01, all compart-
ments, one-tailed Wilcoxon signed-rank test). Interestingly,
TEA-induced action potential broadening was greater in the
soma than the axon for each cell type (p � 0.03, two-tailed Wil-
coxon signed-rank test). We achieved washout of TEA from both
cell types and compartments as control and washout conditions
were not significantly different from each other but significantly
different from the TEA condition (Fig. 5; p � 0.005, one-way
Kruskal–Wallis test for each cell type and compartment drug vs
control and washout).

Application of IBTX (100 nM) resulted in differential effects in
SOM (RS) and FS interneurons. In SOM (RS) interneurons,
IBTX caused a significant increase in action potential duration in
both the axon (45.1 � 18.1%, n 	 6; p 	 0.015, one-tailed Wil-
coxon signed-rank test) and soma (31 � 13.2%, n 	 6; p 	 0.015,
one-tailed Wilcoxon signed-rank test) (Fig. 5). To further con-
firm the role of BK channels in cortical SOM (RS) axonal action
potential repolarization, we performed experiments using PAX
(5 �m), a highly specific blocker of BK channels, in addition to
double and triple occlusion experiments. Addition of PAX to the
bath solution resulted in action potential duration increases of
32% and 21% at the SOM (RS) axon (n 	 2). In a triple occlusion
experiment, addition of IBTX to the extracellular solution con-
taining paxilline failed to further broaden the axonal action po-
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tential, whereas subsequent addition of TEA led to a 116%
increase in axonal action potential duration. Double occlusion
experiments with IBTX and TEA also confirmed that these two
antagonists have different effects on action potential kinetics.
TEA in the presence of IBTX caused an enhanced broadening of
the axonal action potential compared with IBTX alone (72.3 �
41% increase in duration; n 	 3; TEA plus IBTX vs IBTX alone).
In contrast with SOM (RS) interneurons, application of IBTX to
FS interneurons did not significantly change action potential du-
ration at the axon or soma (Fig. 5; axon, 12.3 � 10.6%, n 	 5;
soma, 19.9 � 9.9%, n 	 5; p � 0.1, all compartments, one-tailed
Wilcoxon signed-rank test).

These results indicate that SOM-expressing (RS) and FS in-
terneurons possess differing distributions of K� channel sub-
types in their axonal and somatic compartments.

We have previously shown that the presence of Kv1 channels
in the axons of pyramidal cells causes the duration of these spikes
to be sensitive to somatic steady-state depolarization (Shu et al.,
2006; Kole et al., 2007; Foust et al., 2011). Next, we examined
whether or not a similar phenomenon may occur in SOM-
expressing (RS) or FS interneuron axons because the action po-
tentials in these cells also depend upon �-DTX-sensitive Kv1
channels.

Somatic subthreshold depolarizations influence action
potential shape in SOM-expressing (RS) but not FS cells
To examine whether axonal action potential duration in SOM-
expressing (RS) and FS interneurons is sensitive to somatic de-
polarization, we imaged single action potentials evoked with a
short (5 ms) depolarizing current pulse while the cell body was
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either at resting membrane potential or depolarized by 10 –20
mV to near firing threshold for at least 10 s (Fig. 6).

In response to 10 s somatic depolarization to just below action
potential threshold, action potentials in SOM-expressing (RS)
interneurons underwent a small but significant broadening in the
soma and axon compared with action potentials generated at
resting membrane potentials (Fig. 6; soma, 11.5 � 2.1%, n 	 5;
axon, 9.9 � 2.9%, n 	 5; p � 0.05, all compartments, one-tailed
Wilcoxon signed-rank test). In cortical pyramidal neurons, this
effect of somatic depolarization on axonal spike duration is
distance-dependent, falling off to a negligible effect after �300
�m (Shu et al., 2006; Foust et al., 2011). The effect we observed
here was present in all axonal ROIs examined (27-197 �m from
the soma). These results suggest that subthreshold depolarization
may work to inactivate the Kv1-type channels at the axon and the
soma of SOM-expressing (RS) interneurons in a way similar to
that in pyramidal cells.

In contrast to our results from SOM-expressing (RS) and py-
ramidal cells, FS cells did not exhibit a significant increase in
action potential duration at the soma or the axon in response to
sustained (10 s) somatic subthreshold depolarizations (Fig. 6;
soma, 4.5 � 3%; axon, 3.6 � 4.2%; n 	 5; p � 0.05, one-tailed
Wilcoxon signed-rank test; axonal distances of 76 –150 �m).

Discussion
Previous intrasomatic recordings revealed that different types of
interneurons in the neocortex exhibit unique electrophysiologi-
cal properties (Kawaguchi, 1993a,b, 1995; Kawaguchi and
Kubota, 1996, 1997; Ascoli et al., 2008; Klausberger and Somogyi,
2008; Helm et al., 2013; Perrenoud et al., 2013). However, be-
cause axonal and dendritic electrical properties of cortical neu-
rons differ significantly from those of their somata (Martina et al.,
2000; Kaiser et al., 2001; Kole et al., 2007; Shu et al., 2007b; Yu et
al., 2008; Hu et al., 2010; Nörenberg et al., 2010), somatic record-
ings likely do not provide a complete picture of how each cell type
is adapted to fulfill its role in network function. Here, using high
S/N, spatial, and temporal resolution VSD imaging, we demon-
strate that two major subcategories of cortical interneurons differ
significantly in their axonal and dendritic properties for action
potential generation and propagation.

SOM and FS interneurons differ in their action potential
duration in all compartments
One of the striking physiological features of FS interneurons is
the generation of relatively short duration somatic action poten-
tials (McCormick et al., 1985; Nowak et al., 2003), whereas SOM-
expressing interneurons exhibit regular spiking physiological
properties, generating broader somatic action potentials (Hala-
bisky et al., 2006; Ma et al., 2006; Kubota et al., 2011). Remark-
ably, we found that these differences in action potential duration
were maintained throughout the axonal arbors of these two cell
types. These results support the hypothesis that the electrical
properties of subcellular compartments are specialized for the
functional roles of each cell type (Martina et al., 2000; Hu et al.,
2010, 2014; Nörenberg et al., 2010; Hu and Jonas, 2014). Because
spike duration is a key feature determining calcium entry in pre-
synaptic terminals, and thus neurotransmitter release dynamics
(Sabatini and Regehr, 1997, 1999), the differences in axonal ac-
tion potential waveform we have observed may reflect, in part,
the mechanism by which synaptic strength and timing is adapted
to the differential connectivity and functionality of these two
interneuron subtypes.

SOM and FS interneurons differ in their sensitivity to K �

channel blockers
Our pharmacological investigations suggested that both SOM-
expressing (RS) and FS interneurons depend upon Kv1 channels
for spike repolarization throughout their axonal arbors because
bath application of �-DTX resulted in significant broadening of
axonal action potentials in both cell types. In contrast, block of
Kv1 channels with �-DTX resulted in relatively small (11%–
18%) increases in somatic (see also Zhang and McBain, 1995a,b;
Goldberg et al., 2008) action potential duration in both types of
interneuron. These results are consistent with the presence of Kv1
channels in the axon initial segments of parvalbumin and non-
parvalbumin-containing interneurons in the cortex (Chow et al.,
1999; Goldberg et al., 2008; Campanac et al., 2013), and the pres-
ence of Kv1 in axons of a wide variety of cell types in the brain
(Wang et al., 1994; Veh et al., 1995; Rasband et al., 1998; Erisir et
al., 1999; Wang et al., 1999; Southan and Robertson, 2000; Lambe
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and Aghajanian, 2001; Monaghan et al., 2001; Ishikawa et al.,
2003; Devaux et al., 2004; Goldberg et al., 2005; Guan et al., 2006;
Inda et al., 2006; Kole et al., 2007; Shu et al., 2007b; Goldberg et
al., 2008; Lorincz and Nusser, 2008; Rasband, 2010; Debanne et
al., 2011; Foust et al., 2011; Bender and Trussell, 2012), and is
similar to the dependence of layer 5 pyramidal cells on Kv1 chan-
nels for spike repolarization in their axons, but not somata (Kole
et al., 2007; Shu et al., 2007b; Foust et al., 2011).

Our studies also suggest a dependence of SOM-expressing
(RS), but not FS, somata and axons on BK Ca 2�-activated K�

channels for spike repolarization because the application of
IBTX, a relatively specific blocker of BK channels, resulted in a
significant broadening of SOM somatic and axonal action poten-
tials (Fig. 5). Similarly, we have demonstrated that the axon initial
segment of neocortical layer 5 pyramidal neurons exhibit N and
P/Q Ca 2� channels as well as BK Ca 2�-activated K� currents,
which contribute to normal spike repolarization (Yu et al., 2010).
In this regard, SOM interneurons and layer 5 pyramidal cells
appear to exhibit a similar dependence upon both Kv1 and BK
Ca 2�-activated K� channels for axonal spike repolarization and
spike duration. One possibility is that the longer duration of ac-
tion potentials in these two cell types allows for sufficient entry of
Ca 2� to activate BK channels, whereas the short duration of ax-
onal action potentials in FS interneurons, or the rapid internal
buffering of Ca 2� (Collin et al., 2005; Müller et al., 2007), may
prevent the activation of these channels, if present. BK Ca 2�-
activated K� channels have been observed in axons, presynaptic
terminals, and soma and dendrites of differing neuronal types
(Knaus et al., 1996; Marrion and Tavalin, 1998; Wanner et al.,
1999; Sah and Faber, 2002; Misonou et al., 2006; Debanne et al.,
2011; Bender and Trussell, 2012) and are known to contribute to
spike repolarization in the cell bodies of hippocampal somatosta-
tin interneurons (Zhang and McBain, 1995a,b) and pyramidal
cells (Lancaster and Nicoll, 1987) and at presynaptic terminals,
although this may occur only following block of Kv1 channels
(Hu et al., 2001).

Tonic depolarization has either mild or no effects on
interneuron axonal spike duration
Previously, we and others have demonstrated that the tonic de-
polarization of layer 5 pyramidal cells results in a significant en-
hancement of synaptic transmission onto neighboring pyramidal
and inhibitory cells, at least in part through broadening of axonal
action potential duration and subsequent increases in presynap-
tic spike-triggered Ca 2� transients (Shu et al., 2006, 2007b; Kole
et al., 2007; Yu et al., 2010; Foust et al., 2011; Zhu et al., 2011),
although a role for depolarization-induced increases in baseline
Ca 2� levels is also likely (Awatramani et al., 2005; Yu et al., 2010).
Depolarization of FS and SOM interneurons revealed significant
enhancement in only a minority of synaptic connections between
these cells and neighboring pyramidal cells (Zhu et al., 2011).
This lack of effect of somatic depolarization on synaptic trans-
mission from these two types of inhibitory interneuron is consis-
tent with our finding that depolarization has no significant effect
on axonal spike duration in FS interneurons but inconsistent
with our finding that SOM axonal spike duration is lengthened by
this manipulation (Fig. 6). One possibility is that the distance
between SOM somata and their axonal connections with the
distal dendrites of nearby pyramidal cells is too far for the somatic
depolarization-induced broadening of axonal action potential
duration to propagate to the appropriate presynaptic terminals
because this effect falls off rapidly with distance (Foust et al.,
2011).

In conclusion, it has previously been recognized that different
subtypes of cortical neurons exhibit unique electrophysiological
features, as revealed by intrasomatic recordings (Ascoli et al.,
2008). These variations in electrophysiological features contrib-
ute to unique roles for each cell type in the operation of local
cortical networks (Somogyi and Klausberger, 2005; Klausberger
and Somogyi, 2008; Hu and Jonas, 2014). Dendritic recordings
from FS interneurons reveal that their dendrites are markedly
different from those of layer 5 pyramidal cells, with the former
being tuned for the accurate conveyance of high-frequency syn-
aptic inputs (Hu et al., 2010; Nörenberg et al., 2010), and rela-
tively poor propagation of action potentials (Hu et al., 2010).
Somatostatin interneurons, in contrast, exhibit strong and rapid
dendritic propagation of action potentials (Martina et al., 2000;
Kaiser et al., 2001). These results suggest that the unique electro-
physiological properties of each cell type extend from the soma to
the dendrite. By comparing two of the major subcategories of
inhibitory interneuron in the cortex (SOM and FS), we have used
a complimentary technique to confirm a diversity of somatic and
dendritic electrical properties and, in addition, extend this char-
acterization to the axonal arbor (Hu and Jonas, 2014). These
results indicate that all subcompartments, be they dendritic, so-
matic, or axonal, are uniquely tuned between cell types, in align-
ment with their diverse roles in cortical network function.
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